M1. (a) Enthalpy change/required when an electron is removed/knocked out/displaced (Ignore 'minimum' energy)

From a gaseous atom
(could get this mark from equation)
(b) $\mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-} \quad$ Equation

1
Or $\mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-} \quad$ State symbols (Tied to M1)
(c) Increased/stronger nuclear charge or more protons

Smaller atom or electrons enter the same shell or same/similar shielding
(d) Electron removed from a shell of lower energy or smaller atom or e^{-}nearer
nucleus or e^{-}removed from $2 p$ rather than from $3 s$ Less shielding
(Do not accept 'e- from inner shell')

M2. (a) $4 \mathrm{LiH}+\mathrm{AlCl}_{3} \rightarrow \mathrm{LiAlH}_{4}+3 \mathrm{LiCl}$
(b) $\mathrm{H}^{-}=1 \mathrm{~s}^{2}$ or $1 \mathrm{~s}_{2}$
(c) Tetrahedral or diagram (Not distorted tetrahedral)

(Equal) repulsion

> between four bonding pairs / bonds
> (Not repulsion between H atoms loses M2 and M3)
> (Not 'separate as far as possible')
> ('4' may be inferred from a correct diagram)

1

1
(d) Dative (covalent) or coordinate

Lone pair or non-bonding pair of electron or both e^{-}

QoL Donated from H^{-}to Al or shared between H and Al (tied to M2)
(Not 'from H atom') (Not 'to Al ion') (Not 'e-s transferred')

M3. (a) Ability (or power) of an atom to attract electron density (or electrons or - ve charge) (1) in a covalent bond (1)
or shared pair
If remove an electron lose first mark
(b) Trend: increases (1)

Explanation: nuclear charge (number of protons) increases (1) electrons in same shell (1)

OR similar shielding
OR atoms similar size or smaller
OR 1 mol of e^{-}
(c) Heat / enthalpy / energy for removal of one electron (1)
(d) (i) $2(1)$
(ii) Two elements (or $\mathrm{Na} / \mathrm{Mg}$) before the drop (in energy) to Al (1)
(iii) ionisation energy of $\mathrm{Al}<$ that for Mg (1)
(iv) fall in energy from P to S (1)
or discontinuity in trend
From Al to P there are 3 additional electrons (1)
or three elements
For second mark idea of block of 3 elements

M4.D

M5. (a) $\quad \mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$
$\mathrm{OR} \mathrm{Na}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Na}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$
(-) on electron not essential equation (1) state symbols (1) Ignore state symbols on electrons
(b) Trend: Increases (1)

Explanation : Increased nuclear charge or proton number (1) Stronger attraction (between nucleus and (outer) e^{-}) (1)

Trend wrong
Allow M2 only if M3 correct (con)
(c) How values deviate from trend: (both values) too low (1) Explanation for Al: e- removed from (3) p (1)
e^{-}or orbital is higher in energy or better shielded than (3)s or p electron is shielded by 3 s electrons (1)
Allow e- is further away
Mark independently
Explanation for S : e- removed from (3)p electron pair (1)
repulsion between paired e^{-}(reduces energy required) (1)
Mark separately If deviation wrong allow M2 and M4 If M3 and / or M5 right (con)
If used 'd' rather than ' p ' orbital - lose M2 + M4 but may get M3, M5 (explanation marks)

5
[10]

M6. (a) (i) Atoms with the same number of protons / proton number (1)
NOT same atomic number with different numbers of neutrons (1)

NOT different mass number / fewer neutrons
(ii) Chemical properties depend on the number or amount of (outer) electrons (1) OR, isotopes have the same electron configuration / same number of e^{-}
(iii) $23 / 6.023 \times 10^{23}(1)$
$C E=0$ if inverted or multiplied
tied to M1 3.8(2) $\times 10^{-23} \quad[2-5$ sig figs] (1)
(b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}(1)$
accept subscripted figures
(c) Highest energy $\mathrm{e}^{-} /$outer $\mathrm{e}^{-\mathrm{s}} /$ last e^{-}in (3)d sub-shell (1)

OR d sub-shell being filled / is incomplete
OR highest energy sub-shell is (3)d
NOT transition element / e- configuration ends at $3 d$ Q of L
(d) $\quad{ }_{7}^{15} \mathrm{~N} \quad \mathrm{~N}$ correct symbol (1)
allow ${ }^{\mathrm{N}_{7}^{15}}$
Mass number $=15 \underline{\text { AND }}$ atomic number $=7(1)$

M7. (a)

(b) Increased nuclear charge / proton number (1)

NOT increased atomic number
Electrons enter same shell / energy level OR atoms get smaller OR same shielding (1)

Stronger attraction between nucleus and (outer) electrons (1)
Q of L

Page 6

(c) Explanation for aluminium: (third) electron in (3)p sub-shell (1) Sub-shell further away from nucleus OR of higher energy (1) OR extra shielding from (3)s

Explanation for sulphur: Pair of electrons in (3)p orbital (1) Repulsion between electrons (1)
tied to reference to e^{-}pair in M3
Penalise '2p' once only

