M1. out/displa	(a) Enthalpy change/required when an electron is removed/knocked ced (Ignore 'minimum' energy)				
	From a <u>gaseous</u> atom (could get this mark from equation)				
(b)	$Mg^{}(g) \rightarrow Mg^{}(g) + e^{}$ Equation	1			
	Or Mg ⁺ (g) + $e^- \rightarrow Mg^{2+}(g) + 2e^-$ State symbols (<i>Tied to M1</i>)	1			
(C)	Increased/stronger nuclear charge or more protons	1			
Smaller atom or electrons enter the same shell or same/similar shielding					
		1			
(d)	Electron removed from a shell of lower energy or smaller atom or e⁻ nearer				
	nucleus or e- removed from 2p rather than from 3s	1			
	Less shielding (Do not accept 'e- from inner shell')				
		1			

M2. (a) $4LiH + AICI_{3} \rightarrow LiAIH_{4} + 3LiCI$ (b) $H^{-} = 1s^{2} \text{ or } 1s_{2}$ [8]

(c) Tetrahedral or diagram (Not distorted tetrahedral)

1

(Equal) <u>repulsion</u>	
--------------------------	--

	between four <u>bonding</u> pairs / <u>bonds</u> (Not repulsion between H atoms loses M2 and M3) (Not 'separate as far as possible') ('4' may be inferred from a correct diagram)	1
(d)	Dative (covalent) or coordinate	1
	Lone pair or non-bonding pair of electron or both e-	1
	QoL Donated from H ⁻ to Al or shared between H and Al (<i>tied to M2</i>) (Not 'from H atom') (Not 'to Al ion') (Not 'e-s transferred')	
		1

M3. (a) Ability (or power) of an atom to attract electron density (or electrons or - ve charge) (1) in a covalent bond (1) or shared pair If remove an electron lose first mark

2

[8]

 (b) Trend: increases (1) Explanation: nuclear charge (number of protons) increases (1) electrons in same shell (1) OR similar shielding OR atoms similar size or smaller OR 1 mol of e⁻

3

(c) Heat / enthalpy / energy for removal of one electron (1)

- (d) (i) 2 (1)
 - (ii) <u>Two elements</u> (or Na / Mg) before the drop (in energy) to Al (1)
 - (iii) ionisation energy of Al < that for Mg (1)
 - (iv) fall in energy from P to S (1) or discontinuity in trend
 - From Al to P there are 3 additional electrons (1) or three elements For second mark idea of block of 3 elements

M5. (a) $Na(g) \rightarrow Na^{*}(g) + e^{-}$ OR $Na(g) + e^{-} \rightarrow Na^{*}(g) + 2e^{-}$ (-) on electron not essential equation (1) state symbols (1) Ignore state symbols on electrons

2

2

5

[12]

[1]

(b) *Trend* : Increases (1)

Explanation : Increased nuclear charge or proton number (1) Stronger attraction (between nucleus and (outer) e⁻) (1)

Trend <u>wrong</u> Allow M2 only if M3 correct (con) (c) How values deviate from trend: (both values) too low (1) Explanation for Al: e⁻ removed from (3) p (1) e⁻ or orbital is higher in energy or better shielded than (3)s or p electron is shielded by <u>3s</u> electrons (1) Allow e⁻ is further away

Mark independently

Explanation for S: e⁻ removed from (3)p electron <u>pair</u> (1) repulsion between paired e⁻ (reduces energy required) (1) Mark separately If deviation <u>wrong</u> allow M2 and M4 If M3 and / or M5 right (con) If used 'd' rather than 'p' orbital - lose M2 + M4 but may get M3, M5 (explanation marks)

[10]

5

M6.	(a)	(i)	Atoms with the same number of protons / proton number (1)
			<u>NOT</u> same atomic number

with different numbers of neutrons (1) NOT different mass number / fewer neutrons

- (ii) Chemical properties depend on the <u>number</u> or <u>amount</u> of (outer) electrons (1) <u>OR</u>, isotopes have the same electron configuration / same number of e⁻
- (iii) $23/6.023 \times 10^{23}$ (1) CE = 0 if inverted or multiplied

tied to M1 $3.8(2) \times 10^{-23}$ [2-5 sig figs] (1)

5

(b) 1s² 2s² 2p⁶ 3s¹ (1) accept subscripted figures

1

(c) Highest energy e⁻ / outer e⁻s / last e⁻ in (3)d sub-shell (1) OR d sub-shell being filled / is incomplete OR highest energy sub-shell is (3)d <u>NOT</u> transition element / e⁻ configuration ends at 3d Q of L

(d) $\frac{15}{7}$ N correct symbol (1) allow $\frac{N_{7}^{15}}{7}$

Mass number = 15 <u>AND</u> atomic number = 7 (1)

(b) Increased nuclear charge / proton number (1) NOT increased atomic number

Electrons enter same shell / energy level \underline{OR} atoms get smaller \underline{OR} same shielding (1)

Stronger attraction between nucleus and (outer) electrons (1) Q of L [9]

1

2

 (c) Explanation for aluminium: (third) electron in (3)p sub-shell (1) Sub-shell further away from nucleus <u>OR</u> of higher energy (1) <u>OR</u> extra shielding from (3)s

Explanation for sulphur. Pair of electrons in (3)p orbital **(1)** Repulsion between electrons **(1)**

> tied to reference to e⁻ pair in M3 Penalise '2p' once only

4

[10]